We demonstrate low-power amplification process in cavity optomechanics (COM). This operation is based on the nonlinear position-modulated self-Kerr interaction. Owing to this nonlinear term, the effective coupling highly scales with the photon number, resulting in a giant enhancement of the cooperativity. Even for small nonlinearity, the system reaches the amplification threshold for weak driving strength, leading to low-power phonon lasing. This amplifier can be phase-preserving and provides a practical advantage related to the power consumption issues. This work opens up new avenues to perform low-power and efficient amplifiers in optomechanics and related fields.